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Abstract. We discuss the intcrplas betweenthe energeticcontentof physicalspace
and the topology of the underlying three-manifold. Within the context of the
conformal approach to the initial value problem we examineboth the caseof
axvmptoticall)’ euclideandata given on a complete,non-compactthree-manifold,
and the caseof data assignedon a closedthree-manifold.In the former casewe
provide a description, in the f’ull theory, of the topological changesinducedby
large concentration of gravitational radiation, and of’ the f~rmationof apparent
horizonsjdr time-symmetricdata. In the closedcase,we showthat thepresence
of’ enoughmatterand radiation necessarilyimplies that the topologyof theunder-
lying three-manifoldis (up to identifications) the three-spheretopology, or the
(SI x S

2)-wormhole topology, or that of a connectedsum of’ a denumerable
numberof such manifolds. We also showthat suchtopologiesleave, asf~ras the
field equations are concerned, more room to possible gravitational initial data
sets.

1. IN’rRoDucTIoN

In generalrelativity the notion of three-dimensionalphysical spaceis just an
observer-dependentaspect of the given spacetimegeometry. Nonetheless,its
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geometric characterizationacquiresa particular relevancewheneverwe wish to

consider the gravitational field as a dynamical system and general relativity as

an hamiltonian theory describing the spacetimestructureas the time evolution

of a space-geometry.In this setting, looking at the physicalspaceat a particular

instant of its evolution correspondsto choosing a spacelike embeddingof a

three-dimensionalmanifold S in thegiven spacetime.As is known,thegeometry

of such embeddingcannot be arbitrarily given, it is rathera dynamical variable

the instantaneousstate and future evolution of which is governedby Einstein’s

field equations.In particular, four amongsuch equations,reduceto constraints

that describethe feed-backbetweenthe geometryof the physical spaceand its

energeticcontent.This feed-backis not purely local in the sensethat the equa-

tions describing the above constraintsare elliptic and a slight alteration in the

instantaneousdistribution of the sourcesaffects the whole geometry of the

physical space. The constraintsare also non linear, so that the geometry of

physical space is affected not only by external sources,but also by the self-

-interaction of the geometrical field variables representingthe gravitational

field. In view of this fact, we are naturally led to inquire to what extent the

global propertiesof the physical space,and in particular the topology of the

underlying three-manifoldS modelling it, are affectedby thepresenceof matter

and gravitational radiation. This is an old problem the interestin which hasbeen

kept alive not only by the necessityof a deeperunderstandingof the structure

of Einstein’s equations,but also by the hopethat it may shed somelight on the

nature of quantumfluctuations in the topology of S (if indeed they occur at

all [I]). A thorough and simple answerto this problem is difficult to provide.

Technical reasonsfor such difficulties are connectedto the fact that the above

mentionedconstraintsrelate the instantaneousdistribution of matter andradia-

tion to the scalarcurvatureof the hypersurfaceS. And, as is known, the scalar

curvature of a manifold gives (in any dimensiongreater than two) very little

information on the behaviourof the geodesicfield and henceon the topology.

It is alsoclear from the onsetthat the field equationsdo not easily accomodate

the topology of the physical spaceon a dynamical footing. For, it is known that

any spacetimemanifold without causalanomalies(suchas closedtimehkecurves)

becomessingular whereverits spatial sectionsundergoa changein topology. In

particular, if we assumethat the spacetimeM resulting from theevolution of the

dataassociatedwith S is globally hyperbolic, then necessarilyM S x I, (I being

a suitablesubsetof IR). Sincethe dynamicsof the field is ultimately determined

by the constraints(modulo boundaryterms [2]) it follows from the abovere-

marks that the constraintsare a manifestationof a mechanismthat works for
preservingthe topology of the physicalspace[1].

An examinationof thenatureof theconstraintsis also thekey for understand-
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ing the interplay betweenthe topology of S and its energeticcontent. This

fact hasbeen clear since the pioneeringwork of Brill [3] on the solvability of

the constraints for vacuum time-symmetric, axi-symmetric, asymptotically

Euclidean initial data sets. That analysis (in particular throu&h the work of

J.A. Wheeler [4]) also made clear that therewas a deepconnection between

the topology of 5, the positivity of the Arnowitt-Deser-Misner(ADM) mass

associatedwith the given dataon 5, and thedevelopmentof black-holes.During

the years, Brill-Wheeler’s analysishasbeenimproved,proving a numberof heu-

ristic models, some of which very refined [5], to the effect of describingthe

above mechanismin more general settings.None of these models,however, is

able to deal witl’i the interplay betweentopology andmatter in the full theory,

neither it allows us to get muchinformation on this interplay when S doesnot

supportasymptoticallyEuclideandata(e.g.whenS is closed).

The purposeof this article is a tentativeto fill this gapby providing an analysis

of the interaction between the topology of physical spaceand its energetic

content in the exact theory. This analysisrelies on the conformal approachto

the initial value problem in general relativity, and on somerecent resultson

minimal surface theory for Riemannian manifolds. In this way we obtain a

consistentframework for describing the above interaction without making use
of any heuristic model, or without referring to particular classesof initial data.

The paperis organized asfollows. In §2 we review the (3 + l)-(space+ time)-

-descriptionof generalrelativity and the conformalapproachto the initial value
problem. In §3 we discussthe interaction betweentopology and the energetic

content of S when S is a completemaximal hypersurfacesupportingdata the

Cauchy developmentof which is an asymptotically flat spacetime.We examine

what happensto such dataas the <<energeticcontent>>of S grows. As is known,

in such a case,the discussioncan be reducedwithout loss in generality to an

examinationof the solvability of the vacuum time-symmetricinitial value pro-

blem. By a rewriting of a theoremof CantorandBrill [6], it is possibleto discuss

suchsolvability as an eigenvalueproblem.The eigenvaluesin questionareassociat-

ed to any boundeddomain B C 5, and their vanishingprovidesan obstructionto

the solvability of the constraintson S. If originally S were topologically trivial

(i.e. S 1R3), then it is shown that this vanishingimplies that physicalspacehas

undergonea topology change:it is no longermodelledon S JR3. Physicalspace

is now representedby two disjoint familiesof embeddings:one modelled on the

three-sphere~ and the other on ~2 x JR’ (other topological configurationsare

also possible). As expectedon theground of the remarksabove,the geometries

of such embeddingare in general singular. Thus we are naturally led to discuss

if in a physical spaceon theverge of suchtopological bifurcation (or soonafter

than that has occurred), there can developapparenthorizons. For, modulo the
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validity of the cosmic censorshipconjecture,the existenceof apparenthorizons

implies the existenceof aneventhorizon in theCauchy developmentof thegiven

data [7]. And is such a case the singularities consequenceof the topological

bifurcation will do no harm beinghiddenfrom observation.Sincethe (outermost)

apparenthorizon for time-symmetric data is representedby a minimal two-

-surface in the physical space,we apply known theoremson the propertiesof

these surfacesto discuss the developmentof such horizons. It is shown that,

generically, apparenthorizons do form, but in general not simultaneouslyto

the development of singularities. Notice that such results extend to the full

theory the conclusionsof a recent elegantheuristic model of Cantorand Piran

[5].

In §4 we discussthe interaction betweenthe topology of physicalspaceand

its energeticcontent when S is closed(i.e. compact andwithout boundary).In

this casethereareno particularobstructions to the solvability of the constraints
susceptibleof topological interpretation as before. Here it is the sign of the

scalarcurvature(actuallythe sign of the averagedscalarcurvature)of thephysical

spacethat plays a dominant role. Throughthe constraintsthis sign is related to

the characteristicsof the sourcespresent.In this way, on usingagaintheconfor-

mal approach,eigenvaluestechniques,and minimal surfacetheory(through the

resultsof Schoenand Yau [8]), it is possibleto show that if a sufficientamount

of energyis present(matterplus gravitationalradiation)then topology of physical

spaceis that of a three-sphereS3 (possiblyquotientedby afinite groupof isome-

tries, G, acting without fixed points) or thatof aclosedspaceadmitting a counta-

ble number of (52 x S1)-wormholes.It also comesout thatothertopologiessuch

as S T3, the three-torustopology, restrict a priori the otherwiseallowablesets

of initial datathat can be supportedby S. Someof the resultsof this paragraph

havealreadyappearedin [9] (where, however,theapproachis more cumbersome

owing to a technical error in deriving formula (22) of that paper). In §5 we con-

clude with somefinal remarkson the possibilityof adynamically inducedtopolo-

gy change in S. As already remarkedthesechangesare accompaniedeither by a

causalityviolation (a typical exampleof this behaviouris theTaub-NUT solution
[10]) or by the developmentof a singularity of somesort. This fact hasstrong

implicationson any attempt to introducein the theory the possibilityof topology

fluctuationsat a quantum level and leadsto the issueof thevalidity of Wheeler’s

spacetimefoam pictureasrecentlyemphasizedby B. DeWitt 1.1].

Someremarksabout notation. If not otherwise specified,all tensorfields are

consideredin their completely covariant representation.Furthermore for any

smooth symmetricbilinear form A on a three-dimensionalRiemannianmanifold

(S,g), we set trA~A, AoA~AtkAjk, (V OA)kwVi Ask, where V denotes

the Riemannian connection associatedwith g and where i, k = 1,2,3.
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Wheneverwe needto considerspacetimequantitieswe use a superscript(4), e.g.

(4)g for a Lorentzianmetric, and Greek indicesa, !3 = I, 2, 3,4. Riemann

tensorsign conventionsare fixed by (VjVk—VkVI)v’= Rjkl’v1 with RIk~R~lk;
physical units are taken so that G = c = 1. We will also needto considera few

basicfactsaboutspacesof functions on a given manifold (S,g).Thus, let C~(S)
be the spaceof smooth functions on (5,g) with compactsupport and let Er(S)
be the vector spaceof smooth functions on S that along with their gradients

LI!, (p ~ I) summable.For any fEE~(S)define the usualH~Sobolevnorm

i/p

IIf~
11~(ffPdv) + (fwf.Vf~dv~)hIP).

Completion of Er(S) with respectto this norm yields the SobolevspaceFTc(S).
We define similarly the Sobolev spacesH~P(S)for s> 1. As is known suchdefini-

tionsnaturallyextend(e.g.via local trivializations)to spacesof mappingsbetween

manifolds,f : S -+ V, giving rise to the Sobolev spacesH~(S,V). For detailssee

for instance[11], [12].

2. THE CONFORMAL APPROACH TO THE INITIAL VALUE PROBLEM:
A CURSORY LOOK

Let (V, (
4)g) be a spacetimemanifold solution of the Einstein field equations

Giji:= 8irT~, describing a given gravitating system. According to the (3 + I)

dynamical formulation of general relativity, we regard (V~ S x I, (4)g) as the

Cauchy developmentof someregularinitial dataset(S,g,K), whereS is a three-

-manifold carrier of the initial data,~ is a diffeomorphismmapping V onto the

product S x I (I being a suitable subsetof IR), and g, K are tensorfields on S

respectively representingthe first and the secondfundamental form associated

with the embedding i : S -+ V of S in the final spacetime.To implement this

picture, let Emb (5, V, (4)g) be the set of the emebddingsi : S -+ V such that

I(S) C V is everywherespacelikefor (4)g, and I, as a mapping,belongsto agiven

BanachspaceB. If B is suitably chosen(e.g.H~’(S,V) for S closed),then Emb (S.

V, (4)g) is a smooth(oo-dimensional)Banachmanifold the tangentspaceof which,

at the genericembeddingi, is thesetof vector fields in V covering i. Let i~: [—~ �,

e] -+ Emb (5, V, (4)g) be a curveof embeddings.Suchcurve defineseither aslicing

S~of (V, (4)g) providing a time function in V, or the non-spacelikecongruence

r alongwhich we evolve the datafrom a slice S~.to the nearbyslice ~ ~ Cor-

respondingto a choice of the curvei~,we denoteby ~ the unit timelike future
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pointing normal vector field associatedwith the slicing S~.}. by N~(which is the
lapse function) the proper-time normal separation betweentwo nearby slices

of {S~},and by t the non-spacelikefuture pointing vector field (tangent to the

t-parametrized lines defining the congruenceF) covering ii.. As is known [13].

n. N~,andt arerelatedto eachothervia

(2.1) 1(x) = (Ti) 0(3(X) + N~(x)n(i~(x)).

where ~ : St -÷ TS~is the shift vector field, and Ti~ is the tangentmapping

associatedwith ~ (henceforth, with a slight abuseof notation we shall write

(2. 1) as t = ~ + N~n). Notice that as long as is strictly positive, I is nowhere

tangent to Si,. and the diffeomorphism ~ mapping S x I onto a neighbourhood

of i
0(S) C V is explicitly provided by p : [— e, e] x S—s V. (t. .v) —s i~(x).

Figure 1. The lapse and shift decompositionassociatedwith thecurve of embeddingsi~:
-* Emb (S. M, (

4)g).

Let us respectively denoteby ~ and the riemannianthree-metricand the

second fundamental t’orm induced on S by the embeddingi~.K
1 will he the

trace-free part of K~(i.e.. the sheartensor), and tr (K1) the meanextrInsic

curvatureof in V. In termsof the fieldsN~,is, t, ~introduced above,and in
the local spacetimecoordinatesinducedon Vhy p. we canwrite

(2.2) = (St)ikdxidxk + 2(~~)~dx
1dt— (Ni H ~2) dt2,

(2.3) K
1 =— ~~(St)ikdX1dXk=_ ~

(2.4) k1 ~
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where£ denotesLie differentiationalongthevector field indicated.

As is well known [13], [14], the initial datag,K~togetherwith thedatapheno-
menologically characterizingthe given sources:relative mass density /2 and mo-

mentum density J (relative to a set of ~ observersistantaneouslyat rest on

i0(S)), are not freely specifiable, but must satisfy four constraintsequations,

the Hamiltonianandthedivergenceconstraints,respectively:

(2.5) R(g)+k
2—K’K= l6srp,

(2.6) V’(K—kg)=87rJ,

where R(g) is the scalar curvature associatedwith g, and where the physical

admissibility of the sourcesconsidered is ensuredby requiring that ~~Ill
(the dominantenergycondition).

The effect of the above constraintson the possible initial data sets (g,K)

is best understoodif we recall some basic factsabout thegeometricalmeaning

of the scalar curvature.To this end let exp~: T~S—i. S denote the exponential

mapping associatedwith (S,g) at the generic point x, and let us supposethat

the injectivity radius p of (S,g) is different from zero (p is the largest p > 0

suchthat exp~is, for everyX E 5, adiffeomorphismfrom theopeneuclideanball

of radiusp in 7S onto its image). Let B(x, r) denote the ball of radiusr (r < p)

in 7S, centeredat x, and let B(x, r) be its imageon S as obtainedvia the action

of exp~.If O(x, r) denotesthe ratio betweenthe standardeuclideanmeasure

of B(x, r) and the actual riemannian measurein (S, g) of B(x, r), i.e. 8(x, r)

VOlg(B(X~r))/Vole(B(x, r)) (with e the euclidean metric on 1R3), then [15]

(2.7) R(g)(x)= lim (1 — e(x, r))/r2.

r—’O

In other wordsthe scalar curvature locally measuresthe deviation of the rieman-

nian volume of small geodesicballs from the correspondingeuclideanvolume.

In this sense,the Hamiltonian constraint,relatethegiving of the physicalrieman-

nian measure on S to the instantaneous distribution of matterandgravitational

radiation. This observation motivates the use of conformal techniquesin dis-

cussing the rationaleunderlying the actionof the constraints(2.5), (2.6) on the

fields (g, K~~, J). Within this context we considerthe conformal geometry of

the physical space,at thegiven initial instant, asagivendatum.For, that geome-

trical structure is a convenientrepresentativeof the two dynamical degreesof

freedom, per spacepoint, of thegravitationalfield. Ontheotherhand,the actual

scale geometryof the physical space(i.e. the giving of a smoothvolume form on

5), at that initial instant,beingconstrainedby (2.5),cannotbearbitrarily provided.

Thus a compromise is reached by providing S with a riemannianstructure

(S,~)the underlying conformal geometry of which is the given one, but the
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associatedscale geometryof which is ratherarbitrary, chose at our convenience

(e.g. by imposing that R(~)is some given function. Notice, however, that not

every smooth function on S can be realized as the scalar curvature of some

metric the conformal structureof which is preassigned[16]. Later on we shall

return on this point). The philosophy is to recoverthe actualscalegeometryof

the physical spaceby meansof a conformal rescalingg= ‘F”1~(locally: (g)~~=

= ~‘4(g)~k), where the conformal factor ‘P is determined,as a consequenceof
the constraints(2.5) and (2.6), by the Lichnerowicz-York (or scale) equation

(seee.g. [13])

2
(2.8) 8~’I’+ (A ‘A)’I’~ + l6irp1P3 — — (k2)’P5 = 0, ~11>0,

3

where ~ = — R (~) is the conformally covariant Laplacian associatedwith

~ (~ being the standardLaplace-Beltramioperator correspondingto ~). A is a

symmetric bilinear form on S such that tr
1(A) = Q, ~ .jj = 87rf+ .-W

6Vk.

and ~, J are <<trial>> densitiesof mass and momentumof the externalsourceson

5, respectively.The physical meaningof the fields A. ~, J so introducedfollows

by observingthat, in describingthe external sourcesand possible gravitational

excitations,we cannot directly use ~, J, andK. For, intensiveparameters,such

asdensities,rely for their definition on thescalegeometryof their ambientspace.

and we do not know this latter in advance.Furthermore,the physical fields

realizing the externalsourcesmay havea non-trivial behaviourunderconformal

rescaling (e.g. an electromagneticfield or a neutrino flied [1 7]). Thesedifficul-

ties are overcomeby describingthe sourcesand the gravitational excitationson

S by meansof the <<trial>> density of mass~, trial density of momentumJ. and

trial shearA, introduced above.Notice that ~ and J are free data, as well as is

a free datumthe initial rate of volume expansionk (it providesthe initial rate of
variation of the scalegeometryof (S,R) andit is essentiallya kinematicaldatum.

correspondingto a choice of how (i~(S).,~)is embeddedin the final spacetime

[13]). Noticealso that A is partly constrainedby

2
(2.9) V ‘A = 8irJ + — ‘P6Vk,

3

a rewriting of the momentumconstraint (2.6). It is ratherits i-transversepart

A (7 . A
1 = 0) that is a free datum, describingthe initial rate of variationof

the conformalgeometryof(i0(S),~).

(~,A1,~,f, k) are the freely specifiablepartsof the initial dataset(g. K, p,J)
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(the York data associatedwith (g,4’ jz,J) [13], [18]). Such York dataare con-

nectedto the physicaldata(g,K, p, J) by assuming

(2.10) g= ‘P~,K= ‘P2A+ — ‘P4k~,/2=‘P8p,J= ‘P~J,

where the conformal factor ‘P and the bilinear form A are the solution of the

coupled equations(2.8) and (2.9) associatedwith thegiven York dataset. It is

very important to realize that, sincethe fields A, ~, f arereferredto the fictious

scale geometry associatedwith (S,~),York data aredefined only in conformal

equivalenceclasses.Namely ~-= a~,A = a2A, 1= a6J, ~ = a8~ (with a a

smooth positive function on 5) correspondsto the samephysicaldata(g,K, /2, 1)
as (~,A

1, ~, I, k) do. In this sense,all thepropertiesof the initial dataset(g,K, ji

1) and of its Cauchy developmentonly dependon the conformalclassthe initial

databelong to and on thebehaviourof thesolution of thecorrespondingLichne-

rowicz-York equation(2.8).

3. ASYMPTOTICALLY EUCLIDEAN DATA: TOPOLOGY CHANGES AND
THE DEVELOPMENT OF APPARENT HORIZONS

As is well known, thesolvability conditionsfor (2.8) arequite different accord-

ing to whetherS is an open or a closed (i.e. compact and without boundary)

manifold. Correspondingly,there are different kind of topological information

that we can get from the constraintsin these two cases. Let us consider first

the caseof asymptoticallyeuclideandata.

Let us assumedthat S 1R
3, and supposethat the fields (g, K, /1.1) satisfy

the usual fall-off conditions at spatial infinity associatedwith the boundedness

of the total four-momentum of the gravitational configuration under study.

Namely, denoting by r the euclidean distancein the region external to some

compact setB, we require that thereexist in S\B asymptoticcartesiancoordina-

te chartsin which

— elk] = 0(r~- la ~ Da[(K)
11] = 0(r 2- Ia I)

(3.1) Dap = 0(r
4 al) Da[(J)

1] = 0(r
4 al)

where a is a multi-index (i.e. a triple of non-negativeintegers(a
1.a2, a3), with

a (a1 + a7 + a3), and D°= 3~’~‘). [Usually in going through the proofs
of existenceand uniquenessfor solutions of (2.8). (2.9), it is more convenient

to rewrite the above asymptotic conditions in terms of the weighted Sobolev

spacesof Niremberg-Walker-Cantor[6], [11], [14]. Since a detailedexamination

of suchproofs will not be strictly necessaryin the following, andsincethe result-
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ing formalism would somewhatobscurethe discussion,we spare,the readerthat

transcription]. We further assumethat (S,g) can be harmonically embedded

in the final spacetime(i.e. k = 0, i0(S) in maximal), so that equations(2.8) and

(2.9) decoupleand investigatingthe existenceof asymptotically euclideaninitial

data reducesto a discussionof the solvability of theLichnerowicz-Yorkequation

(2.8) (as is known, the solvability of equation(2.9),determiningthe longitudianl

part of A’, causes no problems. Notice also the R. Bartnik has recently proven

that asymptotically euclidean maximal slices in asymptotically flat spacetimes

exist underverygeneralconditions[19], [20]).

Under the abovehypotheses,M. Cantor [18] andindipendentlyChaijub-Simon
and Y. Choquet-Bruhat[21] haveprovided theexistenceanduniquenesstheorem

for problem (2.8). In particular,Cantorhasshownthat (2.8) is solvable(andthus

thereexist York data for the givengravitational configuration) if andonly if the

chosenbasemetric~can be conformally deformed,within the sameasymptotic

class,to a three-metricwith non-negativescalarcurvature.The solution of(2.8)

is the unique and dependssmoothly on the given York data. The deformabi-

lity condition appearing in Cantor’s theorem is equivalent to requiring that

~ must be conformally deformable to anotherasymptotically euclideanmetric

with zero scalarcurvature. As is known [13], [18], the existenceof sucha metric,

g~,is equivalentto finding a solution to the secondorderlinearelliptic problem

~p— —R(,~s=0,
8 —

(3.2)
P>O

Da(~_ I) =

where p is the conformal factor defining the deformation(g~= ~ In this

connection, Cantor and Brill [6] haveshown that problem (3.2) is solvable if

andonly if, for all functionsf* 0 with compactsupport,we have

(3.3) _fR(~)f2dvf<8 fIVf2d~.

This condition ensuresthat the solvability of the Lichnerowicz-York equation

is possibleeither if R(~)~‘ 0, or if R(,~)is not too negativein asuitableaveraged

sense,namelyif

2/3

(3.4) (f IR(~)I3I2dvi) ~<8/C,
R(~)<0
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C being a large constant.The obstructionto thesolvability of (2.8) (henceto the

existenceof asymptotically flat data satisfying (2.5), (2.6)) representedby the

curvature restriction (3.3) of(3.4) hasa suggestivephysicalinterpretation.Rough-

ly spaking, it correspondsto the fact that therecannothe regular,horizon-free,

asymptotically euclideandataon S ~ supportingtoo much negativegravita-

tional binding energy. This circumstancehas been well-known to workers in

relativity since Brill’s pioneeringwork on the time-symmetric,axially-symmetric

initial value problem [3]. Following him and Wheeler’sremarks[4], we can illus-

trate heuristically the meaningof (3.4) by consideringthe caseof vacuumtime-

-symmetric initial datasets(i.e., we assumep = 0. K = 0 on S; suchdatacorres-

pond to a momentarily static gravitational configuration). Fix the attention on

a smooth sequenceof (base) three-metrics~ such that (3.4) is eventually not

satisfied. Correspondingly, the conformal lactor solution of problem (3.2) (to

which the Lichnerowicz-York equation reduces for vacuum time-symmetric

data) tends to vanish on some (topologically) spherical surface enclosing the

region of increasinggravitational energy. Eventually, this behaviourof the con-

formal factor leads to the developmentof a singularity in the physical geometry

(S.g) (a <<bag of gold>> singularity) which may or may not he hidden, from an

observerat infinity, by an apparent horizon. The correctnessof such picture

hasbeenconfirmed also by variousnumericalcalculations(e.g.. seeEppley [22]),

and by a numberof heuristicexampleswhich try to model (following theoriginal

remarks by Brihl and Wheeler)themechanismaboveby examiningthesolution of

the elliptic problem(Ae — If) f = 0. f> 0, in euchideanspace(with j~-s1 asympto-

tically or in the origin, and whereH is a radial step function), the most refined

model in this direction beingthe descriptionproposedby Cantorand Piran [5].

It is worth einphasi:ingthat although suchmodels capture the essentialfeatures
under/sing the curvature obstruction (3.4). the)’ do not direct/s refer to the

problem (3.2) with its rich underlyinggeometrical meaning.Thus, in this con-
nection, it is interesting that on applying some recent results by R. Schoen

and D. Fischer-Colhrie [23] (results referring to the classificationof stablemini-

ma surfacesin complete three-dimensionalmanifolds), we are able to describe
the above topology-change mechanismin the full theory without recourseto

any heuristic model.

The first eigenvalueof the contorinal laplacian

Again, we refer to vacuum time-symmetric data, for, as a consequenceof
Cantor’s theorem, the solvability of the Lichnerowicz-York equation in the

generic case(on a maximal slice) is assuredif and only if the associated vacuum

time-symmetric initial value problem is solvable. Thus we are led to discuss

problem (3.2) trying to interpret the solvability condition (3.3). To this end.
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let B C S by any given boundeddomain, and let X1(B) <X2(B) <X3(B) . . . be

the sequenceof eigenvaluesof the elliptic operator — ~. Rc~))~acting on

smooth functions vanishing on ~B. That is, the X’s suchthat thereexist f~0,

with suppf C B and

(3.5) [—~+— R(~)]f=Xf.

We will be particularly interestedto the first eigenvalueX1(B) of(3.5), the varia-

tionalcharacterizationof which is

X1(B)=Inf B~ — R(~)f2)dvi;

(36)

suppfCB,ff2dv,= I~.

As is well known, X1(B) hasmultiplicity one, and the correspondingeigenfunc-

tion f~does not changesign, so that we can assumef1> 0 on B. X1(B) depends

continuously on B, and if B, B’ are connecteddomainsin S with B B’ then

X1(B)> X1(B’). Our interest in X1(B) rests on the observation (essentially due

to J.Kazdanand F. Warner [24]) that the sign of X1(B) is a conformalinvariant.

That is, it only dependson the conformal structureassociatedwith the rieman-
nian manifold (5, ,~). In particular, if ~ is the base metric associated with a given

York dataset,andg is the physical metric obtained from ,~by solvingthe Lichne-

rowicz-York equation(g = ‘I’~, with ‘P solution of (2.8)), then we must neces-

sarily have

(3.7) signX1(B;g)=signX1(B;~),

for each connecteddomain B CS (henceforth, we write X1(B;g) etc. whenever

we need to emphasize which riemannian structure has been used in evaluating

sign X1(B)). Relation(3.7) is quite relevantto our analysis,sothat is appropriate

to spend few lines in derivingit. First, it is convenientto rewrite (3.6) as a Ra-
leigh-Ritzquotient,namelyas

= InfJ(B;~,f),

where
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J(B;~,f)~(ff2d~) [f(~n~+- R(~)f2)d~.

Now let g = ip~, anduseLichnerowicz’sformula

(3.8) R(g)’P
5 = — 8~’P+ R(,~)’I’,

to get, after someintegrationsby parts,

J(B;g,f)= (ff2’P6du~)(ff2’P2dv~)J(B~(’Pf)

which yields (3.7).

The connection betweenthe propertiesof X
1(B) andthe solvability of problem

(3.2) is contained in a theorem proved by D. Fischer-Colbrie and R. Schoen

[23] stating that (3.2) admitsa solution if andonly if

(3.9)

for every boundeddomain B C S. Clearly this result is, in the presentcontext,

simply a restatementof Cantor’s theorem, sinceX1(B;,~)>0 if andonly if condi-

tion (3.3) (or, equivalently (3.4)) holds true. The advantageof this formulation

lies in the fact that now the curvature obstruction (3.3) can be simply interpre-

tated in terms of the conformal invariance of sign X1(B). For, if the hamiltonian

constraint (2.5) is to be solvable on a maximal slice 5, then necessarily R(g) ~ 0

for the physical metric g. This in turn implies that sign X1(B;g)> 0 for every

B CS. Hence, owing to the conformal invariance of sign X1(B;g), we get

sign X1(B;~)>0, VB C S, as a necessary condition for the solvability of (2.9)
for a givenbasemetric~ (for thesufficiency so suchcondition the proofproceeds

asin Cantor[18]).

Topologicalbifurcations

Let us see what happensto the geometry of the physical space(S,g =

when, by deforming the base metric ~, we get X1(B;,~)—s 0 for somedomain

B C S. To this end let ,~(/3),j3E (0, 1), denotea family of metrics depending

analytically on a parameter/3, and let ~(0) = ~ thegivenbasemetric for which

problem (3.2) is assumedto havea solution. Let us chosea flow f3—i.g~(I3)and a

domain B C S for which R(,~(f3))becomesmore andmore negativeas f3 increases.

For /3 sufficiently small we can assumethat X1(B;~(J3))>0 for everyBi CS, so

that theproblem
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— R(~((3flp~=0

(3.10)

~> 0,

Da(,,~_ 1) =

admits a smooth positive solution ~~. With thesepremiseslet ,tj(/3) be the first

eigenfunction (see (3.5)) associated with (B;~(j3)).Namely the j’j(f3) such that

— R(~((3fl~~((3) =

(3.11)

fi(~)IaB=0’ }~2~)dtL 1.
B

Multiplying equation(3.10) with ,tj(/3)’ integratingoverB the resultingexpression,

andon applying Green’stheoremwe get

f~fd~
1 f ~(~f1(o~)d~—

B

— ~ f~BR~(~_0

(~being the outward unit normal to riB). That is, on taking into account(3.11)

(3.12) Xi(B,))f)~dv~1= ~

The term (V,tj(/3) o,~)appearingin the surfaceintegral in (3.12) is nonpositive

on FiB [otherwise from (Vfi(/3)°~)~B>Otogether with f1(~)I>B=0 we would
getf~((3)<0 in a neighbourhood,B C B, of FiB, contradictingthepositivy of the

first eigenfunction].More in particular on applying Gauss’stheoremto equation

(3.1 1) overB we get

(3.13) 1B ~)d& =f[~ R(~((3)- X1(B~~((3))]~((3)d~(~)
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which shows that in our case(since R(~(13))< 0), (c’f103) o~)~ can be taken

strictly negative.Thuswe can rewrite (3.12) as

(3.14) ~

There are two different regimes in which we can discussthe implications of

this relation. In the first casewe assumethat while deformingtheoriginalmetric

via the flow ~3-+~(j3), the volume of the region B, in the physical metric g=

= ~ remainsuniformly boundedabove:

(3.15) (Vol(B,g=~~))<C, V/I.

Under this assumption(3.14) implies that if lirn X1(B,,~(f3))= 0, thennecessarily

~ ‘P~ SB = 0; namely FiB becomesa nodalsurfacefor ~p.Thusin this casewe do
not have any longer global solvability for problem (3.10) on the whole original

model manifold S~R
3, Rather we may have solvability of problem (3.10)

restricted to the region B and to the regionS\B. In B it is easily checkedthat

(3.16) lim~=C’f
1((3= 1)

~3—.1

where the constantC’ is fixed by the condition (3.15). While in the external

regionS\IB ~ urn~ will be well definedif there existsa smoothsolution to the

problem

+ — R(~((3))1 ~ = 0, ~> 0 in S\ B
[ 8 — ]

(3.17)

~‘IaB 0

D~— 1) = 0(r~~),

Again, this is solvableif and only if for eachdomain B’ C (S\B), X1(B’,,~(/3=

= 1))> 0. Assuming that the deformation ~—~~(L3)is such that also this last

condition holds true, we can easily interpret what happensto the geometry

of the physical spacewhen X1(B,~) —s 0. For as follows from the aboveresults,
we can describethe conformalmapping~(/3)—sg = ,~((3),as/I—s 1, as a compac-

tification of the region B into a closedphysicalspace~ S
3,g).Its geometry

is provided (up to a constantscale factor, see (3.16)) by g=f
1

4(/3),~(/I)~ 1’

and it is <<singular>> around the <<point>> that correspondsto the surface FiB on

which ,f~= 0. Similarly, the region S\B is mapped by ~(/3) —sg= ~ as

(3.-s 1, into an asymptotically euclidean three-manifold ~2 x R’, g =

= ~4~((3) ~. ~), with ~‘ solution of problem (3.17). Also in this (S
0,g)the surface
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FiB is identified with a single <<point>> aroundwhich thegeometryassociatedwith

g is <<singular>>(the ehagof gold>> singularity of Wheeler[4]).

A
7(B,~1p~1)

lB ~[fl3~

(5(3~J,r.

Figure 2. Compactification of the region B into a closed physical space.As (3—* 1, andX1(B,
g((3))-s0, FiB C (S,g) shrinks to zero, and there is no regular physical geometry that can
describea neighborhoodof FiB in (S,g).

Notice that adifferent typeof topological changeoccursif insteadof condition

(3.15) we assumethat, while deforming the original metric ~ via the flow /3—s

-s), the value of at the boundary FiB remainsuniformly houndedaway

from zero, e.g.

(3.18) ‘P~-ofi 1.

Under this assumption(3.14) implies that

1/2 1/2

X1(B,~(/I)~(ff2~)dv ) (f’P~dvl(~)) LB

where we have used HOlder inequality. Since ff1
2((3)dv~)=1, and
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(f P~dVg~)
112~ Vol (B,g = p~g(I3))11/61 Vol (B,~(/3)I~’~(again Holder inequali-

ty), we ~et

~ LB1~0~~’
which implies that if X

1(B,,~(/3))—s0, then necessarilythevolume of the regionB

in the physicalmetricg = pg(f3)blows up.

)J8,~p)

Figure 3. The region B blows up as X1(B, g(/3)) -* 0 if we assumetheboundarycondition (3.18).

This last case although interestingis less natural than the situation previosly

examined and will be not discussed any further. In effect, condition (3.18) is

much more restrictive than (3,15) since it correspondsto consideringonly de-

formations of the base metric j which leave the two-manifold (FiB, ~) fixed.

In any case,either if we assume(3.15) or (3.18), as X1(B,,~)—s Owe havea topo-

logical changefor the manifold S which is supposedto model thephysicalspace.

This fact leads to some interesting conclusions. In particular it suggests that the

notion of physical space in generalrelativity is a little subtler thanexpectedif we

adopt the conformal approachfor solving the initial value problem. A little
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reflection may help understandingwhere the problem is. We start with a given

manifold on which it is assumedthat the physical spaceis modelled.However

(and here is the point that is generally brushedunder the rug), this manifold

comes into play, according to the conformal approach,only as the manifold

underlying the possible free initial data sets (i.e. the unconstrainedpart of the

initial data) that may possible compete to the gravitational configuration we

wish to consider.For instance,in the casediscussedabove,we weredealingwith

JR3 endowedwith all possible asymptotically euclideanconformal structuresit

can support. Given any such structure, for instance(lR3,~),we wereonly able

to say that the correspondingphysicalspacemodel (S,g) was a three-manifold

S supporting the riemannian structure g = ~ with ~psolution of problem

(3.2). And, as we haveseen,undersuchhypothesesS doesnot needto betopolo-

gically 1R3.

What happenscanbe properlydescribedasthe onestofbifurcationphenomena.

On one side we havethepossiblegeometricalconfigurationsof thephysicalspace

associatedto a vacuum, time-symmetric gravitational configuration. On the

other side we have as a <<parameterspace>> the set of asymptoticallyeuclidean

conformal structureson 1R3. This two sets are connectedthrough the Hamilto-

nian constraintwhich take the form of the elliptic problem (3.2). Bifurcation

occursas we movein the parameterspaceso to makeX
1(B,~), for someB C 1R

3,

pass through zeroand becomenegative.In such casethe hamiltonian constraint

admits at least two distinct curves of solutions ~ —s (Se,g = J’j’~
5)and

—s (50,g= s~~)which model physical space on the topologically non trivial

manifoldsS~ S~andS0 S
2 x JR’.

Arnowitt-Deser-Misnermassand thedevelopmentofapparenthorizons

This nice picture, however, is affected by a serious problem. For, the fact

that either (S~,g)or (S
0,g) are singular may suggestthat as initial data sets

both (S~,g)and (S0,g) are not physically acceptable,and that the conformal

approach may breakdown in such circumstances.In order to discussthis point,

let us fix our attention on the Arnowitt-Deser-Misner mass (see e.g. [25]),

m~J~~(g),associatedwith the dataset (S,g). In asymptotically cartesiancoordi-

nates,theexpressionfor m~~~(g)hasthe familiar form

(3.19) m~0~(g)= (g111—g11~)du1.

whereS~is the two-sphereinterceptedat spatialinfinity by thegiven slice (S,g).
Similarly, we may formally define mADM(~),the massassociatedwith the given

basemetric ~ [strictly speaking,on usingsuitablediffeomorphismsandconformal
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changesin ~, we can always choosea basemetric ~ in such a way as to have

m~~~(g)= 0, seee.g.[13]].

The fact that the metricsg and ~ are conformally related implies that [13]

(3.20) m~~~(g)—m~~~(g)= — — I (~‘~)da~.
27r )s-

To see what happensto this expressionwhen ‘P —s 0 somewherein 5, let us intro-

duce the function

(3.21) W~log’P,

in terms of which equation (3.2) canberewritten as

(3.22) Z~W=—R(~)--lVWl2.

Let us integratethis equationover (S\ Q,~),where Q is a compactsetin S with

smoothboundary3Q.On applyingGauss’stheoremwe get

f(~lo~’P)oda_ f — f (R(~)_8I~Wl2)dvj.

Since’P—s1 on Sr,we get

1 (~ If
—— I (Vp)odà=—— I (Vlog’P)od&—

2~rJ 2’rrJ
S7 SQ

— I ~
l6irJ —

S\Q

That is, on taking into account(3.20),

(3.23) m~~~(g)— m~~~(g)= — — f ((~log ~) o ~)d & —

2ir )aQ

— I (R(~)_8I~Wl2)du~,
167rj —

S\Q
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where .~is the outward unit normal to FiQ (thought as an embeddedtwo-surface

in (5, ,~)).Let us now deform ,~ in such a way that somewherewithin Q, R(,~)
gets more and more negativeuntil condition (3.4) breaks down and ‘P—~0on

some nodal two-surface FiB strictly contained in Q. Notice that (m~0~(g)—

— n1ADM(~)) keeps track of these changesin Q through the surface integral

in (3.23) and through the term VW1
2 in the volume integral over S\Q. On

applying a techniquedevised by Yau [26] (see also [20]) it can be shown that

this latter term is boundedabove,andthat in particular for any 0 <13< 1. p ~ 3,

thereis an estimateof the form

i/p i/p[f ~wl2Pdvj] ~a(f KPdv~) +

B((1—13)r) B(r)

+ ap~2(f (R(~))Pd~)i/P+ a/I2pr2[Vol (B(r),~)]’1~,

B(r)

where a is a numericalconstant,K is a non-negativefunction so that — K is the

lower bound of the Ricci curvatureof (S,~),and B(r) is the generic geodesic

ball of centerx
0 and radiusr in (S,~).While this estimatecan be usedto bound

the contribution of ‘17W 2 to (3.23) it cannothelp in controlling the surface

integral in (3.23). For this latter it is more convenientto proceedas follows.

Let us considermoreclosely the integrandappearingin it, namely (~oV log’P).
If we set

(suchs is the unit normal, in the physical metric g, to the surfaceFiQ), then a

straighforwardcalculationyields

(3.24) ~i~.1og’P= ~O
2V

15’ f1~5i,
4 4

Hence(3.23) canbe rewritten as

I If
m~~~(g)— m~~(g)= — ~ L + — } (V~fi)db—

(3.25) p

—~ I (R(j)—8IVW~
2)du~.

l6irJ —
S\Q



INITIAL DATA SETS,CONFORMAL GEOMETRY, ETC. 165

Notice that the surfaceintegral f>Q (V
1~)d & dependsonly on the choice of the

embeddingof the surface Fi Q in (S,g) [for, (‘17k ~‘) is simply (minus) the traceof

the extrinsic cuvature associatedwith the embedding of FiQ in (S,~)].The

troublesome term in (3.25) that still keepstrack of the possibly bad behaviour

of’Pwithin Qisf(’P
2V

1s’)du.

Thus, if we wereable to choosea FiQ for which V1s’ SQ = 0. everythingwould

be fine. Notice that such condition characterizesFiQ as an extremal two-surface

in the physical space(S, g) (the proof that such Fi Q is actually a stableminimal

two-surface is discussedbelow). Since the data are time-symmetric, that FiQ

would be an example of apparent horizon (an apparenthorizon in a general

(S,g) is a closedtwo-surfacewith unit normalssuchthatVies’ ±K11 (gi/ —s’s’) =

= 0, where the plus sign refersto a future apparenthorizon,while theminus sign

refersto a past apparenthorizon). If we assumecosmic censorship,thepresence

of such Fi Q will indicate the presence,in the Cauchy developmentof the data

(S,g).of a black hole.

Figure4. A minimal 2.surfaceFiQ in physicalspace(S,g) imageof a closed2-surfacein the
basespace(S, g).

Thetopology ofapparenthorizons

According to the aboveremarks,we are led to discussthepossibility of choos-

ing FiQ in such a way as to have (Vls’)ISQ = 0 in the physical space(S,g). As

follows from (3.24), this is the caseif the embeddingof FiQ in the given base

space(S,~)canhe chosenin sucha way as to have

(3.26) + 4(g’ V!1 log’P) = 0.

Before discussingthe feasibility of this choice,let us first remark that there is a

necessarytopological requirement that FiQ must satisfy if. as it will come out,

FiQ is embeddedas a stableminimal two-manifold in (S,g).To this end. andalso

for future reference,let us first recall the secondvariation formula for thearea
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functional for hypersurfaces.

Let Ii and b respectively denotethe first and the second fundamentalform

associated with the embeddingof FiQ in (S,g). Locally h11 = g11 —s1s1, b~1= —

— hj
Thj~VrSp~If we deform (Fi Q, h), in (S.g), alongthe normal direction z = fs,

wherefis a smoothfunctionwith compactsupporton FiQ, then the first variation

formula for the areafunctional provides:

d (
— (Vol (FiQ,h~))_——I tr(b)fda~.
dz — )

SQ

~S,g)

Figure 5. A normal deformation of the embedded2-surfaceFiQ.

from this we get

d2 f
(Vol (FiQ, hi)) = — I f2[ I ~ 2 + Ric (s,s)—(tr (b))21du~ —

dz2 — J
SQ

(3.27)

_ff2flda,

where we haveexplicitly taken into account the fact that the Lie derivativeof

(tr (b)) alongz= fs is givenby

d
(3.28) — (tr(b)) = [lb 2 + Ric (s,s)+ t2~]f,

dz

with L~2 b
11 b,,,,,~hiTh1m,and where (2)~ and Ric (s,s) respectively are the

Laplace-Beltrarni operator on FiQ, associatedwith h, and the Ricci curvature,

associatedwith g, in the direction s.
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Since f(t2~f)= d2~Af2)—l t2~Vf(2, an integration by parts in (3.27)

yields

c12 (
(Vol (aQ,h~))= I [I12~Vfl2—(~I2 +

dz J
sQ

(3.29)
+ Ric (s,s)— (tr (b))2) f2] dug.

From the minimality of(FiQ,h) we get (tr(b)) = 0, so that thestability condition

(d2(Vol (Fi Q, h))/dz2) 0 ~ ~ yields

(3.30) f [~~2~Vf~2— (Ric (s,s)+ I ~ 2) f2] do ~ 0,

for any functionf with compactsupporton FiQ.
Following Schoen and Yau [27], we can rewrite the terms(Ric(s,s) +1b12)

appearingin (3.30) in a more useful way. From the contractedGausscurvature

equationwe get

(3.31) H= R(g)—2 Ric (s,s)+ (tr(b))2 —lb 2,

where H is the scalar curvature of (FiQ,h). Since (FiQ,h) is minimal, we can

rewrite (3.31)as

1 1
(3.32) Ric(s,s)+1b12= — R(g)— —H+ —

2 — 2 2

which, whenintroducedin (3.30), together with R(g) = 0, yields

(3.33) J — (H—lb I2)f2]da~O.

If in this expressionwe choosef identicallyequalto onethenwe get

(3.34) fHdG~fIbI2do.

By the Gauss-Bonnet theorem (see e.g. [28]) fHdo = 47Tx(FiQ) (notice that
H is twice the Gaussiancurvatureof (FiQ,h)), wherex(FiQ) is the Eulercharac-

teristic of FiQ [x(FiQ) is 2 for the sphere,zero for the torus, and negativefor
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any otherorientableFiQ]. Hence

(3.35) 4~x(FiQ)~I ~
15Q

As long as b r�’ U (i.e. (FiQ, h) hassomeshear)(3.35) implies that a FiQ for which

(3.26) holds true and gives rise to a stable minimal manifold in the physical

space(S,g) is topologically a two-sphere.[This fact could havebeenanticipated

by recalling a well-known result by Hawking, [29], accordingto which an appa-

rent horizon must be a two-sphereprovided that the dominantenergycondition

holds true]. It is worth noticing that if Li = 0, then (3.35) may be alsoconsistent

with FiQ being topologically a two-torus.Howeverwe can dismisssuch an even-

tuallity as non generic by noticing that in this case (e.g.see [23]) suchtorus is

embeddedas a flat, totally geodesictwo-torus in a flat (topologically non-trivial)

(S,g).

A further interesting property that a FiQ, for which (3.26) holds true, must
satisfy is also strictly related to (3.35). It comesabout when we expressthe

integral j’Ib 2do appearingin (3.35) in termsof h and~, the first andthesecond

fundamentalforms of theembeddingof FiQ in thebasespace(S,~).A straightfor-
ward calculationyields

bk= ‘P2(bik_2hikSJV/W), hlk= ‘P4hjk.

Hence,if we takeinto account(3.26)

l~I2=’P4[l~l2__(tr(~))2], du=~4d&

and (3.35) reducesto

(3.36) 4~x(FiQ)~LQ(1~12~(tr(~))2)d~.

The integrandin (3.36) is just squareshearthat (FiQ, h) inherits from its embed-

ding in (S,1). Hence, the two-surfacesfor which (3.26) may hold true (in the

stable sense specified above), can be found only among the two-spheresthat

satisfy the low-shearcondition

(3.37) LQ (l~I2_ (tr(~))2)d&~8~.
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Thedevelopmentofapparenthorizons

Let us now discussthe actual possibility that a two-surface(FiQ,h) for which

(3.26) holds true develops.To this end let (Fix, h) be a two-surfacein (S,~).

According to the above considerationswe assumethat Fi~is topologically a

2-sphere, and that its mean curvature with respectto the outward normal is,

on theaverage,negative.Namely

(3.38) f (tr(~))d&<O,

.15 ~

(notice that according to our conventions, the sign of the mean curvatureis

chosen so that the sphere in the Euclideanspacehasnegative mean curvature

with respectto the outward normal). Let us denoteby Emb (Fi~,S,~)the set

of embeddings i : Fi~~ (S,~) such that i(Fi~)CS satisfies condition

(3.34), and let us assumethat i as an mapping belongs to the Sobolev space

of mapsH~(FiE,S).Consider,for a givensolution Wof problem(3.22) on(S,~),

the following mapping from Emb ~ to the smooth functions on Fix:

(3.39) F(j, Fix) m—(tr (h)) I5~+ 4(~°VW) ~
The zeros of this mapping, if any, characterizethe embeddingsi : ~2 —s (5,~)
for which (3.26)holds true.

With these premiseslet us apply Gauss’stheoremto equation(3.22) over the

(simply connected)region~ boundedby Fix. In this way we get

I (~o~W)d&= I _R(~)—I~Wl
2J J8 —

which, on taking into accountthedefinition ofF, yields

(3.40) (F(~,Fi~)d&~—I (tr(~))d&+ — I R(~)du~.J — 2JL
52~ S~

This providesan upperbound to the averagevalue of F over Fi ~ in termsof the
averagemean curvatureof i(Fi~2)and of the integratedscalarcurvatureR(,~)in
the region ~. Notice in particular that in (3.40) thereis no more referenceto the

actuai value W of the solution of (3.22), which insteadentersdirectly thedefini-

tion ofF.

Let U denotean opensubsetof S. Considernow a compactlysupporteddefor-
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mation /3—s~(/I),0 </3< 1. of the givenbasemetric~,which holds (S,~)outside

a compactsubsetof U fixed. Let {i (Fi~)},(p = 0, 1,2,...), denotea sequnece

of embeddingsbelonging to Emb (Fix. S,~)such that Uc ~oc ~ c ~2 ç

(~denoting the domain boundedby i~(Fi~)).We choosethe deformation/3—s

so as to make R(~(./3))more and more negativein U. As follows from

(3.40) even if initially j’Fd&> 0 (as can be always arranged)fFd& decreases

as the deformation goes on and, provided that the negative lower hound of
R(~(/3))gets sufficiently large, we can make 5 Fda vanish on some i(Fi~),

let us say on i*(Fi~). If IlF(i*(Fi~))1H~ is sufficiently small, then we expect

that in the sameisotopy classI(i*(Fi~)) ofi*(Fi~) thereexistsan elementT(Fi~)

for which F(i(Fi~))= 0 holds pointwise [J(i*(Fi~)) denotesthe collection of

embeddings i~(Fi~)which can be expressed as i~(o~)= ~~~(i*(Fi�)), It 1< 1,

with ~ :(— 1, 1) xS—sS, a smooth diffeomorphism for each t, defined by

=

Figure 6. The developmentof an apparent horizon in the physicalspace.

To make this remark more precisewe apply the inverse function theoremto
F. Begin by using the field of geodesicsorthogonalto i*(Fi~) to parametrize
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a neighbourhoodof i *(Fi ~) by l~*(Fi ~) I x (— e, e) so that (x, 0) correspondsto

XE i*(Fi ~) and so that (x) x (— e, e) is the geodesicsegmentorthogonal to

i*(Fi~)at x, parametrizedby arc length.Now let us considerthe formal lineariza-

tion of F(~,i*(Fi~)) around i*(Fi~). On utilizing the isotopy induced by the

above parametrizationand (3.28) we get for any smooth deformation2 = f2

aroundi*(Fi~)

DF(i*(Fi~),,~)�=oof= —( I~2 + kic ~ —

(3.41)
—4 HessW(~,~)+

wheref is a smooth function with compactsupporton i*(Fi~),(2)~is the Lapla-

ce-Beltrami operatoron (Fi~,h)and where HessW is the Hessianof Win (S,~)

(locally [Hess W(.i,2)] = ~ ‘
17k W).

From (3.41) we see that the linear mapping f-sDFof is an isomorphism

betweenopensetsof scalarfunctions in H(i * (Fi ~)) if (seee.g.[12], Th. (4.18))

(3.42) [ li~2 + Ric ~ —4 HessW(~,i~)]j*(5~)< 0.

If i*(Fi~) is such that (3.42) holds true, then by the inverse function theorem
F(i(Fi~)) is alocal homeomorphismof a neighbourhoodA(i*(Fi~))C Emb (Fir,

5,,~)of i*(Fi ~) to a neighbourhoodof F(i*(Fi ~)). In particular if II F(i *(Fi ~)) ll~~
is sufficiently small, then thesequenceof embeddings

(3.43) i~+ ~(Fi~)= ~ ~ DF(i(Fi~))L’ Ii*(S~)‘F(i(Fi ~))

convergesto theunique embeddingi(Fi~)in A(i*(Fi~))such that F(i(Fi~))= 0.

Notice that condition (3.42), if satisfied, besidesimplying the solvability of

(3.26) also implies that the embedding i(Fi~)generatedaccording the above

procedureactually minimizes (Vol (i(Fi ~), h = ‘P~~i)amongall competingembed-

dings.

To see this let I =f3~.fE C”~(Fi~),denote a variation vector field associated

with the geodesic parametrizationof i*(Fi~)x (— e, e) introduced above. Let

Vol[i(Fi~),h=’P4h]= P4d0

1i(S~)

be the area functional associatedwith i(Fi~) in the physical metric g = ~

but thought as a functional of the embeddingof Fi~in the given basespace

(S,j). Consider now the first and the secondvariation of this areafunctional

under the action of 2, around an embeddingT(Fi~)for which F(T(Fi~))= 0.

An easycomputation(asfor (3.27)) provides
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— Vol [i(Fi~),h = ‘P4~}IO5a) f ~4fF(~Fi~))d& = 0,

i(5~)

d2 f
— Vol [i(Fi~),h = ‘P4h] lT(SV)= — J ‘P4ft2~fdU

(3.44)

— f ~
i~a~)

The sign of the first integral in (3.44) is not so easilyestimatedas in theanalogous

expression(3.27), sincewe cannotintegrateby partsowing to thepresenceof the

factorv’4 Howeverwe can proceedas follows. Let us supposethat

I
(S ~)

This implies that for someopensubdomainU C Fi ~

f(2)~f ~2~~f2i~fl2>o fl
5~=0.

That is ~
2~f2> 0 in U, f2l

5~=0. which by Hopf’s maximum principle [12]

impliesf= 0 on U. Thus we get a contradictionand

f
~i(S~)

Introducing this into (3.44) andtaking into account(3.42) we get that correspon-

ding to the embeddingi(Fi ~)

d
2

—~ Vol [i(Fi~),h = ‘P L!]Ij(S~)~0
dz

as claimed.

Once clarified thegeometricalmeaningof condition (3.42),it remainsto check

if this condition can be met. To this end, let (e
1, e2,~)be an orthonormal triad

with ~ unit vector fields tangent to the embedding i(Fi~)C (S,~).On

taking into accountequation(3.22) we canwrite
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7~W HessW(~,2)+ HessW(ë1,ê1) + HessW(ê2,ê2)=

(3.45)
= — R(~)—IVWl

2.

But

HessW(é~,ê~)+ HessW(ê
2,ê2)= ~ — (.~“7~W)(tr(i)).

Hence,after rearrangingtermsin (3.45),we get

(3.46) R(~)—8 HessW(.?,~)= 8 ‘~1W2+ 8
t2~W— 8(~VrW)(tr(i)).

On the other hand condition (3.42) can be rewritten as (by using the Gauss
curvatureequationasin (3.31)):

(3.47) [I~ 2 + (tr (~))2~ + R(~)—8 I~essW(~,~)] Ii(Sz)<0,

where ./2 is the scalarcurvature of (i(Fi~),I). If we rewrite the term (?V~W)
(tr (i)), appearingin (3.46),as 8(i~T~~W)= 2F + 2(tr (i)) (by using(3.39)),and

introduce the resulting expressionfor I R(,~)— 8 Üess W(2,s~)in (3.47), we get

that (3.42) is equivalentto requiring

(3.48) [I~ 2—H+ 81 ~‘W~2+8~2~W— 2(tr (~))F— (tr (~))2] I.(Sz)<0.

But

1 1
~ T 2 2

where we have used again (3.39). If we introduce the sheartensor a = —

— ~- 1(tr (p)) associatedwith b. and plug in these latter expressionsin (3.48)

we finally get that (3.42) canbe equivalentlyrewritten as:

(3.49) [ial2—~+8I~2~WI2+8~2~W+— F2— 2(tr(~))F1 <0.
L 2 — Jj(5~)

In this form condition (3.42) suggestsitself for which two-surfaceslook for in

order to get it satisfied.For, if we fix ourattentionon theequipotentialsurfaces

W = Cost.,(3.49) reducesto

(3.50) ~aI2_~+ _F2_2(tr(~))Fl <0.
2 — -Ji(az)

And, as soon as F(i(Fi~))becomessufficiently small this is satisfied provided
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that the shear al is not too large[notice that, as a consequenceof(3.37),Ial on

the averageis smallerthanH].
More in general,if we want to check the feasibility of condition (3.42) on

two surfaces which are distinct from the equipotentials W = Const., (3.49)

shows that this condition cannot be satisfiedcorrespondingto a generic wild
embeddingofa Fi ~ in (S,~),And even if we assumea low shearcondition(such

as (3.37), for instance),so to have(i(Fi~),Ii) sufficiently round in (S,~)it is
further necessarythat i(Fi~2)is sufficiently ~near~an equipotentialW = Const..
Namely, we must require that I t2~\7WIi(a~:) is small enough.The tolerance on

V2~VWIcan be easily estimated on assumingthat correspondignto i(Fi~),
F(i(FiE)) is a small positiveconstant,say e, and integratingthe resultingexpres-

sion (3.49) over i(Fi~).In this waywe get

f ~I2~ + 8f I(2)~WI2d&+ — ~2 f d& —

i(Sz) i(S~) i(52)

(3.51)

—2� ( (tr(~))d&< f Hd&.

~i(SE) Jj(5~)

Since i(Fi~)is topologically a two-sphere(3.51) implies (on applyingthe Gauss-
-Bonnet theorem)

1 I~2~~l2d&<~+ — e I (tr(~))d&.) 4) —

i(az) i(S~)

An explicit upperbound for I ~2~VWI in termsof the geometryof thegiven base
space(S,~)can be provided as follows. Let I(i(Fi~2))= i(Fi~) x (—e,e) denote

a tubular neighbourhood of the given i(Fi~2).Let (B
1(r1)) be a finite covering

of I(i(Fi~2))by geodesicballsB.(r1) C (S,~)of radiusr.. For eachB1(r1), 0 </3<

< 1, p >3, there is, as alreadyrecalled(see p. 164), an H’ bound for VW~
2of

the form:

1/p 1/p[f I~WI2Pdug] <a(f KPdV
1) +

B1(r~)
(3.52) 1/p

+ ap
112(f (R(~))Pd~) +a/32pr12[Vol (B~(r~),~)]’~.

B,(r
1)
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~

1’ i/p
(3.53) [j I(2)\~wI2Pdvj] <c~,

B
1((i —13)r~)

where C1 is a shorthandfor the expressionappearingat the right side of (3.52).
Notice that by choosingsuitably r1 and /3 in C1, (3.53) allows us to estimateto
a greataccuracyV

2~/WIon B
1((1 —,6)r1) fl i(Fi~)and henceto control the size

of I ~ I on i(Fi~)in terms of the geometryof the ambientspace(S,~)in
a neighbourhoodof i(Fi~)’Finally notice that we can also control the size of
~ appearingin (3.49). Let U C i(Fi~)a domain in i(FiY2). For any sufficiently

smooth functions on i(Fi~),f, ~‘, with ~‘ having compact support in U, we can
write

(3.54) f f
2 I (2)~ 12d&> f ~2ft2~fd&.

i(Sz) i(S~)

Let choosefso to havef= exp(W). In this case(3.54)reducesto

f f2 I (2)~ l2d&> f ~2f2[~2~~W+ I (2)~W 2] dO.
i(Sz) i(sz)

Sincesupflj(a ~ q <00, this implies

(355) f (2)~ I2d0> f ~2[(2~W + I (2)~j~/~2]~dO.
i(S~) i(Sz)

Now let us remark that the aboveexpressionis a conformalinvariant [this imme-
diately follows by noticing that if = a4h

1~,then
t2~.f=a4~2~~f.I~2~VfI2=

= ~ I~2~VfI2]~Thus, modulo a one-point compactification and a diffeomor-
phism,we can discuss(3.55) on the Euclideanplane.There,the validity of the
variational inequality (3.55) for every smooth ~ with compactsupport, implies

that

( f2
(3.56) — [~2~W+ I ~2~VWI2]d2x <C,

q

Cbeinga constantthat can be estimated,andwhereD is the union of thedomains
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in ~2 where the integrand is positive. Clearly by conformal invariance (3.56)

holds true also on the original two-manifold i(Fi~)providing there an upper

houndfor thepositive contribution of t2~W.

Estimates(3.53) and (3.56) imply that in any case, regardlessof the use of
equipotentials, condition (3.42) can be satisfied corresponding to einbeddings

i(Fi~) which probe regions in (S,a) of sufficiently small curvature. Since (3.53)

and (3.56) only dependon the local propertiesof(S,a)nearbyi(Fi~),thecuria-

ture in the domain ~ boundedby i(Fi~)needsnot to be weak. In particular the

scalar curvature R(~)within can be made large and negative. Correspondingl-i’

f(i(Fi ~)) gets smaller and smaller and the proceduredelineatedabove, via the

inversefunction theorem,can beactually implemented,yieldinga uniqueembed-

ding [(Fi~), in the same isotopy class of i(Fi ~), for which I V~2’+ 4C~’V
1

log p) ~ = 0, and which realizes an apparent horzon in the physical space.

According to the aboveresultswe can now completethe pictureof <<topological

bifurcation>> occurring for the physical dataas the given basespaceis deformed

in such a way as to develop larger and larger negativescalarcurvature.As this

happens;and X1(B,,~)goes through zero, singular solutions, (S~,g)and (S0.g)

of the Hamiltonian constraintdevelop. From the aboveanalysiswe cannot con-

clude that apparenthorizons form in (Se.g) and (Se.g) as soon as ~ (B, ~)—s 0.

However, as the negativepart of the scalarcurvatureincreasesfurther, either in

~ g) or in (Se.g) apparenthorizonsdisconnectingthesingularregionsfrom ob-
servationdo form. [It is clearthat evenif theabovediscussionof thedevelopment

of minimal two-surfacewas referring to theasymptoticallyeuclideansingularso-

lution (S0,g), its conclusions can be extended also to (S~.g)without substantial

alterations]. The open singular solution (S0,g) eventually provides data for a time-

-symmetric black-hole configuration the (ADM)mass of which is well-defined

and positive [this last statementfollows from the positive masstheorem(seee.g.

[30] for a recent discussion); in particular from the positive mass theorem for

time-symmetric black-holespacetimesproved by P.S. Jang [31]]. Similarly. the

other singularsolution (S~~g)eventuallyendsup in describinga perfectly well-

-behaveddataset correspondingto a closedphysicalspacecontaininga black hole

in a momentarily static configuration.

Thus, in general, corresponding to a curve of base metrics /3 —s~(/3)for which

X1(B,R(/3)) decreases,goesthroughzero, andattainsnegativevalues,therecorres-

ponds a family of physical metrics /3 ‘-sg(/3), solutions of the Hamiltonian cons-

traint which starts as an asymptotically euclidean vacuum, time-symmetric,

initial data set (X1 > 0), then bifurcates (A1 = 0) into two distinct curves of

singular solutions(S0,g) and (S~,g)modelled on topologically non-trivial mani-
folds, and finally settles down (A1 <0) to regular black-holds data sets. [As

further decreaseswe may suspectthat this processgoeson ad infinitum, with
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S0 and S~.themselvesbifurcating and giving rise to more and more complicate

configurations of possiblesingularandwell-behavedtime-symmetricdata.Notice

that CantorandPiran’s heuristicmodel suggeststhis eventuality].

In appearslikely that the above mechanismcarriesover to the most general

(i.e., non-vacuum, non-time-symmetric case).However no proof of this fact

is available [a generalproof of the occurrenceof apparenthorizons, in presence

of matter, and for regions of <<large radius>>, for asymptotically Euclideaninitial

data sets has been provided by Schoenand Yau [32]. However, their, proof,

which is of an indirect nature,cannotbe easily accomodatedwithin the confor-

mal approach]. Finally, it is clear that the abovetopological bifurcation mecha-

nism is, within theclassicaltheory,just a pleasantcharacteristicof theformalism,

since, as alreadystressed,topological changesin the spatial sectionsare dynami-

cally suppressedby the evolutive part of Eistein’s equations(1). The real issue

raised by the considerationsof this paragraphwill rather concernthe relevance

of this bifurcation mechanismat a quantumlevel.

4. THE TOPOLOGY OF CLOSED PHYSICAL SPACE

When the three-manifoldS on which physicalspaceis assumedto be modelled

is closed(i.e. compactandwithout boundary)the interactionbetweenthe topolo-

gy and the energeticcontent of the physicalspaceappearson a different footing

than in the asymptotically euclidean case.Thesedifferences,however, are only

apparentand eventuallywe endup with deepconnectionsbetweenthe two cases.

Let us start by noticing that now solvability conditionsfor theLichnerowicz-

-York equation (2.8) are not of muchhelp as they are in the open case.For S

closed, problem(2.8) hasbeen discussedby Choquet-Bruhat[33] andby O’Mur-

chadhaand York [341, assumingthat S can be embeddedin the final spacetimeso

to haveconstantmean extrinsiccurvature(i.e. k constant).They provedthat, for

each given set of York data (,~,A~,~.J, k), (2.8) admits a unique bounded

solution exceptfor a set of York datacorrespondingto unphysicalconfiguration

of matter and gravitational radiation (e.g. vacuum time-symmetric data on

closed three-manifolds). In particular, from their analysis it follows that no

curvature restriction (say, such as (3.4)) plays any significant role in discussing

existence,uniquenessand stability of solutionsof (2.8), wheneversomematter

or gravitational radiation is present. This circumstanceraises the question of

which topological information may be provided by the Hamiltonian constraint

(I) To avoid any misunderstandingnotice thatthe topology changesdiscussedis achange
alongafamily of initial data,but not a changein time.
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when S is closed.

We can try to get topological information by usingknown topologicalobstruc-

tions to particular values of the sign of the scalarcurvature R(g) appearingin

the Hamiltonian constraint (2.5). Clearly, this line of approachmust be taken

cautiously. For, while initial datasetsare given in conformalequivalenceclasses,

the scalar curvatureis not a conformalinvariant, changing,in general,eitherits

sign or its support underaconformaltransformation.Onthe otherhand,suchan

approach has a strong physical appeal. For, a rewriting of the Hamiltonian
constraint(2.5) as

2
(4.1) R(g)= 167r~.L+KoK——k

2

— 3

tells us that the three-manifold (S,g), modelling the physical space,tends to

support thoseriemannianstructureswhich give rise to not <<too much>> negative,

or even positive, scalarcurvature, if enoughmatter and gravitational radiation

are present. Actually, the only negative contribution to R(g) comes from a

kinematical term:(k)2. Evenif we cannotsimply disposeof this term by referring

to its non-dynamicalnature (e.g., k = 0, for S closed,cannotbe assumedin

generalwithout strongly restricting thegravitational configurationunder study),

2

we may reasonably expect that ‘~- (k)2 is dominated, in physically realistic

situations, by the <<matter plus radiation>>termsp and KoK. If this dominance

were to hold everywhere,then we would be in avery nice situation. For, there

is a number of topological obstructions (see below) that must be necessarily

satisfied by closed Riemannian manifolds supportingpositive scalarcurvature.

In general,we can only assumethat there are regionsin which(l6~M+ ~°~—

— ~- (k)2)> 0 holds, and regions where it doesnot (e.g. those regions where

matter and radiation are absent).This casecannotdirectly yield the sameinfor-

mation of the formercase.For,as is known [35], [36], a negativescalarcurvature

doesnot impose particular restrictionson the topology of the underlyingmani-

fold S. However,since initial data setsare definedin conformalequivalenceclas-

ses,it may happen,if (k)2 is not too large,that in the sameconformalequivalnce

class defined by the physical metric g there are representativeelementsg’ (in

general,different from the given basemetric j) whoseassociatedscalarcurvature

is pointwise positive. This circumstancewill reconduceus to former case(for a

smooth conformal trasformation doesnot alter either the topology of S or the

given initial set) and will allow us to getnontrivial topological information from
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theHamiltonian constraint.

With thesepremises,let us consideron (5, g) the functional

— 1/3

(4.2) Y(g,f)_~(ffsdu) (8fIvf!2du+ fR(g)f2dvg),

with fE H~(S),f> 0. This functional was introducedby Yamabe[37], in discus-

sing the well-known conjecturenamedafter him: in eachconformalequivalence

class{g} over a simply connectedclosed riemannianmanifold (V’1,g) (n > 3)

thereare representativeelementsg’ (not necessarilyunique)theassociatedscalar

curvatureof whichR(g’) is aconstant.

Our interestin (4.2) restson the observation(due to Aubin [12], p. 126) that

thenumericalquantity

(4.3) 1(g) = Inf Y(g,f)

fEH?(S), f>.0

if attained,is a conformal invariant. That is, it only dependson the conformal

structure associatedwith the Riemannianmanifold (5,g). In particular, if ~ is

the base metric associatedwith a given York data set (~,A
1,~,J, k) and g is

the physical metric obtainedby solving the Lichnerowicz-York equation(2.8),

thenwe must necessarilyhave

(4.4) 1(~)=1(g),

There reader will havenoticed the similarity between(4.1), (4.2) and the varia-

tional characterization(3.6) of the first eigenvalueof the first eigenvalueof the

conformal Laplacian for a domain B. Here, however, it is muchmore difficult

to prove that the infimum (4.3) is actually attained.It canbe easily shown (by

usingLichnerowicz’ formula (3.8)) that this infimum is attainedby the solution

of thesecondorder,non-linear,elliptic problem(theYamabeproblem)

(4.5)

with v’ smooth and strictly positive, and whereg’ = p
4gand R(g’) = 1(g). The

study of this problem hasattractedmuch effort (see [12] for a nice account).

The difficulty in dealingwith (4.5) lies in thewell-knownfact that theexponent

of p in the non-linearterm in (4.5) is just the limiting exponentfor thevalidity

of the compactnessof the Sobolev embeddingtheorem,so that we cannotuse

with confidencethe variational method for solving (4.5). There are also other

subtlities in (4.5) which arespelled in details in Aubin’s book [12]. In any case,

owing to theeffortsof Yamabe,Trudiger,andAubin, we now know that
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1(g) <6w~3

for any riemannian structure (S,g), normalized to unit volume, on a closed

three-manifold S. Here w is the volume of the unit three-sphere~ endowed

with its constantcurvaturemetric ~ If furthermore

(4.6) J(g)<6w2/3,

then thereexistsastrictly positive solution of problem(4.5), with R(g’ = cp4g) =

= 1(g) and J’ v’6d 0g = 1, so that in this case the Yamabeconjectureholds true.
[Notice that the “three-dimensionalYamabe conjecture would he completely

settled in the affermative if 1(g) = 6w~3were to imply that (S,g) = (S3.g~~
0)].

We haveseenthat 1(g) carriesinformation on the conformal structureasso-

ciatedwith themodel physicalspace(S,g).However,what is muchmoreinterest-

ing is the fact that1(g) carriesalsoinformation on the topology of the underlying
manifold S. This easily follows by observingthat conformally flat structureson

topologically different basemanifolds, say as (S
3,g~~

0)and (T
3,g~~),(thethree-

-torus with the flat metric), gives rise to different valuesof 1(g) (6w2/3 and 0.

respectively). This latter remark suggeststhat a consistent way of obtaining

topological information from the Hamiltonian constraintmay be thatof looking

at the propertiesof the 1(g) associatedwith the given initial data set.What is

particularly relevant is the sign of 1(g). A negativevalue for 1(g) doesnot appear

to be interesting,since,as already recalled,there are no topologicalobstructions

to negativescalarcurvatureon closedmanifolds(actually it turns out thatevery

three-dimensionalmanifold S admits conformal structureswith 1(g) < 0 [35]).

On the other hand, positive (more in general non-negative)scalarcurvature is

topologically obstructed, thus those collections of initial data sets such that

1(g)> 0 (g the physical metric) must be necessarily be supported by three-
-manifolds S compatible with such obstructions. In fact, as a consequence of

Aubin’s proof of the Yamabe conjecture,a positive 1(g) implies the existence,

in the same conformal equivalenceclass {g} associatedwith g (hence within

the same York data set), of a representative element g’ such that R(g’)> 0

(actually R(g’) = 1(g)).

The above-mentionedobstructionsto positive scalarcurvatureon a riemannian

manifold (V’1,g) (n > 3) first madetheir appearancein a work by Lichnerowicz

[38], who via the index theoremof Atiyah and Singer showed that if a spin-

-manifold admits a metric of non-negativescalarcurvature(not identicallyzero)

then its Hirzebuch A-genus must be zero. This result was further extendedby

Hitchin [39], and by Gromov and Lawson [40], [41], who by using theDirac

operator (again on spin-manifold) generalized the Lichnerowicz argument.

Obstructionsto positive scalarcurvature not costrainedto spin manifold, were
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also investigated,by different, methods,by SchoenandYau [8]. who by examin-

ing the obstructionsto theexistenceof stableminimalhypersurfacesin (5, g),have

been ableto classify those,closed,simply connectedorientablethree-manifoldsS

which can supportRiemannianstructuresof positive scalarcurvature.Schoenand

Yau’s approachis particularly simple and fits well within the conformalmethod.
In connectingthe natureof the minimal surfacesin (S,g)with the sign of the

scalar curvatureR (g). it ultimately relates the structureof possibleapparent
horizonsin the physicalspacewith a geometricalobject,R(g), that via the Hamil-
tonian constraint,reflectsthe structureof thephysicalsources.[Strictly speaking,
minimal two-surfacesare distinct from apparenthorizonsfor non-time-symme-

tric data, (see p. 25), howeverit is a standardconjecturethat whenevera minimal
two-surfaceforms then, in the sameisotopyclass,an apparenthorizondevelops].

Schoenand Yau’s method is essentiallybasedon the secondvariationformula
for the hypersurfacearea (3.25). From (3.25) and (3.28), assumingthe mini-

mality and the stability of the embeddingof a closed two-surfacei(Fi~)in a

three-manifoldof positivecurvature(S,g),we get

I V2~VfI2+~(Hj~~2R(g))i(S 2~)

for any smoothfunction on i(Fi~).Forf= 1, this yields

f Hda~f

i(az)

which, by theGauss-Bonnettheorem,implies

(4.7)

where X(Fi~)is the Euler characteristicassociatedwith (FiZ). Thus according
to (4.7), if (S,g) has strictly positive scalarcurvatureand if it containsclosed

stableminimal surfacessuch a i(Fi ~), then necessarilythesesurfacesmust have

positive Euler characteristic.In particular it follows from this result that a(S,g)

with R(g)> 0 cannot have closed immersed stable minimal two-manifolds

the genusof which ~ is ~ 1. (as is known, the genusof a two-manifold, com-

monly the <<numberof handles>>of themanifold is related to the Euler charac-

teristic via x(Fi~)= 2— 2w). However, Schoenand Yau also showedthat whe-

never the fundamentalgroup ~ of S has a subgroupwhich is isomorphic
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A
(S,g)

Figure 7. An immersedminimal 2-manifoldof genus3. If this minimal surfaceis stablethen
thescalarcurvatureof the ambientmanifold(S,g) cannotbepositive.

to fl1 (Fi~)(Fi~~beingthe standardtwo-spherewith ~, ~ > 1, handles)there

exists a stableminimal immersion of ~ in S. It is thus clear, accordingto the

previousresults, that any suchthree-manifoldS cannotsupport positive scalar

curvaturethree-metrics.Hencefor a closedthree-manifoldto accomodateametric

with positive scalarcurvature,the fundamentalgroup111(S)cannotcontaina sub-

group which is isomorphic to the fundamentalgroup of a closedtwo-surfaceof

genus> 1. This fact provides a strong constraintfor suchS. andmodulo some

standardconjecturesin the topology of three-manifolds,it showsthat any closed

three-manifoldwith positive scalarcurvatureis eitherthe three-sphere~ (possibly

quotientedby a finite group of isometriesacting without fixed points), or the

handled three-sphereS
2 x 51 (this is a standardwormhole model for a closed

three-manifold; thereare someGowdy (see[9] for references) spacetimeswhich

exhibit this topology in their spacesections),or a connectedsumof a countable

numberof suchthree-manifolds,that is

(4.8) S~S~/F#...#S3/F’#S2xS1#...#S2xS1.

whereF, F ‘ are finite groupsin SO(4).
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(~)R3

Figure 8. The definition of the connectedsum of two manifold. Let ~ and ‘I’ be local charts
mapping a neighborhoodof x E S andof y E V on B(O, 1) E R” (the ball of radius 1 centered
at the origin) with p(x) = “I’(y) = 0. Let h denote the inversion, in 1R0, of center 0,which
preservesthe collar C(0, 1/2, 1) and which exchangesS(0, 1/2) and S(0,1) (the spheresof
radius 1/2 and1, centeredin 0,respectively).Then

S #V (S — p~(B(0,1/2))) U (V — ~Ir 1(B(0, 1/2))

is the manifold obtained by glueing the manifolds S — ~ ‘(B(O, 1/2)) andV — ‘I’’(B(O, 1/2))
alongtheopensetsp1(C(0,1/2, 1) and‘I’’(C(O, 1/2, 1) by meansofthe mapping~1i~°h°p.

According to theseresultswe are naturally led to discuss for what initial data

sets the conformal invariant 1(g) is positive, for, suchdatacanexist on S only

if S is of the topological type(4.8). From the definitions (4.2) and(4.3) it imme-

diately follows that 1(g)> 0 wheneverR(g)> 0. However, as already stressed,

we would like to weakenthis condition, for in realisticsituationthe scalarcurva-

ture of the physical space(S,g) will be somewherepositive andsomewhereelse
negative. In any case, an overall negative scalar curvature, regardlessof how

small, cannot be associatedwith a riemannianstructureg satisfying 1(g)> 0.

To show this, let us suppose,on the contrary,thatsuchagwith R(g)< 0 exists.

by taking into accountthe variationaldefinition (4.3) of 1(g) and evaluatingthe
functional Y(g,f) forf= 1, we get
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(4.9) (Vol (5,~ 1/3 fR(~)dv~>1(g).

Hence,if 1(g)> 0, then we must necessarilyhave

(4.10) R(g)dvg>O.

is

Thus, according to (4.9) and (4.10), we expect that 1(g)> 0 is associatedeither

with a riemannianstructurethe scalarcurvatureof which is everywherepositive,

or with a riemannian structure with scalar curvature somewherepositive and
somewherenegative, but on the averagepositive. In effect it is simple to prove

that this positivity on theaverageis alsoa sufficient condition for having1(g)> 0.
As an easycomputation shows [see p. 16, or p. 126 of [12]; it is this computa-

tion that implies theconformalinvarianceof 1(g)], we have

(4.11) Y(g,f) y(g*,uf)

wheneverg=u
4g*. Forf= 1, on taking into accountthedefinition (4.2) of the

functional Y, (4.11) yields

— 1/3

(Vol (5,g)~i/3fR(~)dt~= (fu6d~*) x

(4.12)

x (8f(Iv*u 12÷R(g*)u2)dv~*).

Now let us assume that even if ./‘ R(g)dv
5>0, 1(g) = J(g*) < 0. This latter

hypothesis,by the Aubin-Yamabe theorem,implies the existenceof a smooth

andstrictly positive p suchthat

— 8L~*~+ R(g*)pS= J(g*)~pS

Substitutingforu = p into (4.12) yields

(Vol (S,g)~i/
3fR(g)dvg= 1(g) <0,

and hencea contradiction if, as assumed,R (g) is on the averagepotive. Thus

1(g)> 0 wheneverf R(g)dvg>O.
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Now, let us supposethat themetricgis thephysicalmetric andlet us takeinto

account the Hamiltonian constraint in the form (4.1). Then the above results

show that the topology of the three-manifold S modelling the physical space
is necessarilythat of a three-sphere,or that of a (51 x S2)-wormhole,or a connec-

ted sum thereof (see (4.8)), not only when on S there is enough matter and

radiationsuchthat

2

(4.13) I6irp +KoK— — (k)2> 0
3

holds pointwise, but, more in general,alsowhen(4.13)is locally violated, provid-

ed that the negativecontributionof — (k)2 is dominatedon the averageby

by thematterplus radiationterm l6irp + K oK, that is when

1 2

(4.14) I l6irp+koK— — (k)2 dv >0.J 3
S

This relation is clearly not a condition to be imposedon the initial data, for in
it there appearthe physical data rather than the correspondingYork data. In
this sense,it is not a condition that may be used to select,a priori, the topology

of 5; rather, it may be used to explain, in a preciseway, how the presenceof

matter and radiation works towards selecting a particular class of topologies

for a closedphysicalspace.

The aboveconsiderationssuggest to define as generic theunderlyingtopology

of a closed physical space(S,g) if thereare no a priori restrictionson the sign

of the conformalinvariant1(g). Notice that, as already recalled,on every closed
three-manifoldS a riemannianstructureg’ canbe introducedsuchthatI(g’) < 0.

Furthermore [15]. it can be shown that if S admits a riemannianstructurethe

associatedscalarcurvature of which is non-negative,then S can supportalso a

riemannianmetric g with 1(g) = 0. According to suchremarks, the only three-

-manifoldsS modelling a closedphysicalspace,theunderlyingtopology of which

is generic in the abovesense,are either ~, S3/F, ~1 x ~2 or a connected sum

thereof.

The importanceof the notion so introduced lies in the fact that, within the

context of the conformal approachto the initial value problem,the genericity
of S implies the existenceof no a priori restriction on the possiblefree initial

data S can support. For, 1(g) being a conformal invariant, an obstruction to

particular values of the sign of 1(g) correspondsto further constraintson the
possibleinitial datasetsbesidesthe for differentialconstraints(2.5), (2.6) natural-
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ly associatedwith the field equations.Clearly, as far as the field equationsare
concerned,the a priori existenceof further constraints,besidesthe naturalones,
must be consideredas associatedwith a gravitationalconfiguration not corres-

ponding to the most general gravitational configuration admissibleon a closed

physical space.In this sense,other topologiesfor S than ~3, $3/F, ~1 x ~2 or a
connectedsum thereof unnaturallyrestrict the typesof conformal structuresS

can support. For instance,on the three-torusT3 there cannotbe distribution

of initial data with 1(g)> 0. In practice, genericity in the sense introduced

above corresponds,via the Aubin-Yamabetheorem,to the freedomin choosing

an arbitrary scalegeometryon S (i.e. anyR(,~)in the Lichnerowicz-York equa-

tion (2.8)). The fact that sometopologiesleavelessroom than othertopologiesto

possibleinitial datasetsdoesnot surprise.Thecaseof the three-torusT3, already

recalledis typical. Here the obstructionto 1(g)> 0 correspondsto theimpossibi-

lity of having initial dataon T3 suchthat R(g)= l6irp +KK— (k)2> 0. In

particular, it immediately comesout from suchremarkthat a spacetime(V4, (4)~)

developmentof some regular initial data set supportedon S T3, cannot admit
a moment of time symmetry (i.e. at

0 suchthat = 0), or, in general,a moment

of maximum expansion(i.e. a t0 such that (ks)= 0), unless,at that instant,no

sourcesare present-a well known circumstancethat our resultsextend to all

spacetimesdevelopmentof regular initial datasets supportedon spacesections

the topologyof whichdiffer from (4.8).

It is perhaps surprising that the amount of topological information that the

Hamiltonian constraint can provide is so large. As we recalled,by itself, the

problem of existence, uniqueness and statibility of solutionsof the Lichnero-
wicz-York equation (2.8) doesnot involve much of the topology of 5, when

S is closed. It is ratherthe circumstancethat the initial data(in particular,the
gravitational initial data) must be specified in conformal equivalence classes that

allows us to obtain,by meansof the conformal invariant1(g), topological infor-

mation on S. In this way we arguedthat the topologiesthat we intuitively expect

to be encounteredin physically plausibleworld modelsarethoseactually prefer-
red, eitherbecausethe presenceof matterandradiationfavoursthem,or because

they are less restrictiveas arenasfor possibleinitial datasets.It is difficult not to
seein theseresultsa further indication towardsinterpretingtheactionof thecon-

straints, for a closedphysical space,as a manifestationof Mach’s principle [42].

5. SOME CONCLUDING REMARKS: TOPOLOGY OF THE PHYSICAL SPACE
AND QUANTUM FLUCTUATIONS

Although the results of the previous paragraph show that there existsa deep
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connectionbetweenthe topology of the physicalspaceandits energeticcontent,

we get somehowdiscouragedwhen we realize that at a classical level topology

changesare forbidden. Wheeler suggestedthe idea that this is no more the case

at the quantumlevel andthat the topology of three-spacemight undergoquan-

tum fluctuations when the radiusof curvaturein (S,g) becomescomparablewith

the Planck length. As DeWitt [I] hasrecentlyemphasizedthere are a numberof

conceptual difficulties that this picture must solve before being considered

realistic. The most serious difficulty seemsto be the suggestion,put forward in

Anderson and DeWitt’s paper, that topological changesare, as in the classical

case,dynamically forbidden. This conclusioncomesfrom examiningan heuristic

model whereby we replace the gravitational field with a linear masslessscalar

field. This field is supposedto evolve in a (I + 1)-(space+ time)-dimensional

spacetime,where the spacesections, originally diffeomerphic to the circle S’,

splits, as the evolution goeson, into two circles, i.e. S’ —s~1 + ~1 A discussion

of this model, as well as of other, more refined, higher dimensional models,

shows that a change in topology is always accompainedby an infinite energy

production. This fact comesout to be in conflict with the maintenanceof the

constraintsbefore and after the topology changeand with the non-violation of

the usual causalityrequirements.Henceit forces the actual suppressionof any

changein the topology of the physicalspace.

However, as we have seen, the developmentof some sort of singularity as

the topology of the physical spacechangesis not the whole story as far as the

field equationsare concerned.For, apparenthorizons, disconnectingthesingular

regions from observations,do form <<soonafter>>the appearanceof singularieis.

This suggestsan alternative view wherebythe maintenanceof the constraintsis

preserved<<almost>> always; topology changes,and quantumtopology fluctua-

tions are allowed, and give rise to singularities which soon after their appearance

arehidden by apparenthorizons.The correctnessof this view is only very weakly

supported by our considerations,and most likely it suffers by more serious

conceptualdifficulties than the standardview, however it remainsa suggestion

worth to be tested.
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